
Nintex Forms: API for
SharePoint O365

Last updated Friday, March 4, 2016

Contents

Nintex Forms for Office 365 REST API iv
Nintex Forms O365 Quick Start 1
1. Get the items you need before you work with the API 1
2.Working with the REST services 1

A. Get your authentication cookie from SharePoint 1

With a .NET REST Client 2

With Windows PowerShell 2

B. Collect your header information 2

C. Construct a URL to reach the target endpoint 2

Next steps 3

Related information 3
Guide 3

What is REST? 3

What can I do with the REST API? 4

Related information 4

Exporting a form 4

Considerations 5

Prerequisites 5

Code 5

Example 5

Related Information 11

Importing a form 12

Considerations 12

Prerequisites 12

Code 12

Example 12

Related Information 18

Saving a form 18

Considerations 19

Prerequisites 19

Code 19

Example 19

Related Information 25

Publishing a form 25

Considerations 25

-ii-

Nintex Forms: API for SharePoint O365

Prerequisites 26

Code 26

Example 26

Related Information 32

Delete a form 32

Considerations 32

Prerequisites 33

Code 33

Example 33

Related Information 38

Base URL 38

Related Information 38

Authentication and authorization 38

Authenticating operations for SharePoint Online 39

Visual C# 39

Windows PowerShell 40

Authorizing operations for the Nintex Forms for Office 365 REST API 41

Related Information 41

Getting Your SharePoint 0365 Credentials via REST 41

Get Your Authentication Cookies 42

Example: 43

Related Information 45

Common headers 45

Request headers 45

Response headers 46

Related Information 46

Common status and error codes 46

HTTP status codes 46

Nintex Forms for Office 365 error codes 47

Related Information 47

Response bodies 47

Message 48

Error 48

Related Information 49

Data types 49

Link 50

Related Information 50

-iii-

Nintex Forms: API for SharePoint O365

Nintex Forms for Office 365 REST API
Welcome to the Nintex Forms for Office 365 REST API.

Use the left hand side navigation to browse the various help topics. You can also use the
Search box in the top right hand corner to search for any key words.

l If you're eager to dive right into the REST API, the "Nintex Forms O365 Quick
Start" on page 1 provides a short overview of what you need to get started.

l The "Guide" on page 3 provides practical information about using the REST API,
with examples that you can use in your applications.

l The API Reference contains an overview of the technical information you'll need to
use the REST API, as well as detailed reference information about the REST
resources, data types, request and response bodies, and other elements included
with the REST API.

If you have specific queries or questions, you may also want to try Nintex Connect, at
http://connect.nintex.com, which is our vibrant community of Nintex customers and
partners as well as a collection of blogs and additional material to help resolve prob-
lems and use the Nintex platform to its fullest.

If you require support, please contact support@nintex.com

-iv-

Nintex Forms: API for SharePoint O365

http://connect.nintex.com/

Nintex Forms O365 Quick Start
You can quickly and easily export, import, migrate, save, and publish forms from Nintex
Forms for Office 365 by using the NintexForms for Office 365 REST API. The quick start
provided here demonstrates the REST API, by walking you through the steps needed to
export a Nintex form from SharePoint Online.

To use the API, establish your credentials and the endpoint. Use a REST client to contact
the endpoints. The following quick start walks you through the following steps:

1.Get the items you need before you work with the API.
2.Get your authentication cookie from SharePoint.

A.Get your authentication cookie from SharePoint.
B.Collect your header information.
C.Construct a URL to reach the target endpoint.

lExport Form
lImport Form
lSave Form
lPublish Form
lDelete Form

1. Get the items you need before you work with the API
Before you can begin you will need:

lAn account on SharePoint O365 with site administrator privileges. You will need
these credentials in creating a token to access the API.
lNintex Forms for Office 365 and Workflow for Office 365 installed and activated
on the O365 site where you plan on hosting the forms.
lAn understanding of REST. The API uses RESTful endpoints. For more information
about REST see "RESTful Web services: The basics."
lYou will need the Nintex API Key and an API URL from the administrator of the
SharePoint O365 tenancy. Note the API URL is different than the URL for the tar-
geted SharePoint O365 tenancy.
lYou may also need specific headers used in the REST call required by the tenancy;
this will also be provided by the administrator of the SharePoint O365 tenancy.
lThe ID of the list from where you plan on exporting or importing the Nintex
Forms.

2. Working with the REST services
The following section will look at using the REST service using HTTP calls in order to ori-
ent you to use the API. You must first get your authentication cookie from the
SharePoint 0365 tenancy that you plan on working with. You can retrieve the authen-
tication cookie via HTTP, with a .Net REST client, or by using Windows PowerShell.

A. Get your authentication cookie from SharePoint
Send the following information to the SharePoint to get your authentication cookie:

oUsername
oPassword
oSite URL

The cookie will have the following format: Cookie, Site URL, SPOIDCRL = cook-
iestring

-1-

Nintex Forms: API for SharePoint O365

http://www.ibm.com/developerworks/library/ws-restful/index.html

You can retrieve your authentication cookie via REST in a workflow using HTTP. For
more information see "Getting Your SharePoint 0365 Credentials via REST" on page 41.

With a .NET REST Client
You can find detailed code samples for C# in the "Guide" on the next page section which
include five samples using Microsoft's HTTPClient library. The following code snippet
highlights how these clients retrieve the authorization cookie:

var login = "Username";

var password = "password";

var siteUrl = "siteURL";

var creds = new SharePointOnlineCredentials(login, password);

var auth = creds.AuthenticateAsync(new Uri(siteUrl), true);

var request = (HttpWebRequest)WebRequest.Create(siteUrl);

request.CookieContainer = auth.Result.CookieContainer;

var result = (HttpWebResponse)request.GetResponse();

With Windows PowerShell
You can find a Windows PowerShell script that demonstrates how to use the
GetAuthenticationCookie method to retrieve an authentication cookie for the
SharePoint 0365 tenancy using the credentials. For more information see "Windows
PowerShell" in "Authentication and authorization" on page 38.

B. Collect your header information
You will need the appropriate header information:

lAuthorization
Using the authorization cookie from Step A.
lAPI-Key
Using the API Key from your site administrator.

C. Construct a URL to reach the target endpoint
The URL uses the following format:
domainofo365tenant/api/v1/forms/listid, i.e.,
https://crestan.com//api/v1/forms/6263627c-57a6-42d0-9c87-2232e4e1899d

Headers:

lAuthorization header. The cookie will have the following format: Cookie, Site
URL, SPOIDCRL = cookiestring.
lAPI-Key. The key will be 22 characters long.

The API supports the following methods:

-2-

Nintex Forms: API for SharePoint O365

lExport Form
Call example:
GET https://crestan.com/api/v1/forms/6263627c-57a6-42d0-9c87-2232e4e1899d
with the headers. The call will save a binary file containing the Nintex Form data
(NFForm.nfp). For details see the reference topic at Get Form.
lImport Form
Call example:
POST https://crestan.com/api/v1/forms/6263627c-57a6-42d0-9c87-
2232e4e1899d with the headers. Include the payload of the Nintex Form. For
details see the reference topic at Import Form.
lSave Form
Call example:
PUT https://crestan.com/api/v1/forms/6263627c-57a6-42d0-9c87-2232e4e1899d.
You will receive a JSON payload containing a _link that holds a relative link to the
publish end point (step 7). For details see the reference topic at Save Form.
lPublish Form
Call example:
POST https://crestan.com/api/v1/forms/6263627c-57a6-42d0-9c87-
2232e4e1899d/publish with the headers. For details see the reference topic at Pub-
lish Form.
lDelete Form
Call example:
DELETE https://crestan.com/api/v1/forms/6263627c-57a6-42d0-9c87-
2232e4e1899d to remove a form from a list. For details see the reference topic at
Delete Form.

Next steps
The "Guide" below provides practical information and examples for each REST resource
and operation included with the REST API. Experiment with the examples provided in
the Guide to get a better idea about how to use the REST API.

The API Reference contains an overview of the technical information you'll need to use
the REST API, as well as detailed reference information about the REST resources, data
types, request and response bodies, and other elements included with the REST API.
The API Reference is the best place to answer technical questions about implementing
the REST API

Related information
"Guide" below

API Reference

Guide
This guide takes you through the REST resources and operations included with the Nin-
tex Forms for Office 365 REST API, providing examples that you can use in Visual Studio
2013.

What is REST?
Representational State Transfer (REST) is a methodology for implementing scalable
web services. REST emphasizes a stateless, cacheable implementation with a uniform
interface, typically accessed using Hypertext Transfer Protocol (HTTP). The REST ser-
vice decouples the client from the server, by providing access to REST resources, each
of which is accessed by using a Universal Resource Identifier (URI) that identifies that
particular REST resource.

A REST resource is typically accessed by using HTTP methods, such as GET and PUT, to
send and receive self-descriptive messages between the client and the REST service.
These messages are typically expressed using Hypertext Markup Language (HTML),
Expressive Markup Language (XML), or JavaScript Object Notation (JSON). The mes-
sages are self-descriptive in that each message includes enough information to describe

-3-

Nintex Forms: API for SharePoint O365

how to process the message, and contains representations of information with which the
client or the REST resource can interact. For example, the Nintex Forms for Office 365
REST API does not connect a client directly to Nintex Forms for Office 365, but instead
serves as an intermediary between the two, interacting with representations of inform-
ation, such as forms and export files, exchanged in such messages.

The combination of a REST resource and an HTTP method typically identifies a specific
operation that can be performed for the information represented by that REST resource.
Multiple HTTP methods are often used with a particular REST resource to represent dif-
ferent operations that can be performed for the information represented by that REST
resource.

For example, to export an existing form from Nintex Forms for Office 365to a client for
a fictional customer named Crestan, the following REST resource is invoked, using the
HTTP GET method:
https://crestan.nintexo365.com/api/v1/forms/fd4f1cd2-7ea7-4b62-9751-0ff83ab609f7

However, invoking the very same REST resource and using the HTTP POST method
allows the client to import a form file, overwriting the form inNintex Forms for Office
365 for the list. HTTP methods allow REST to avoid ambiguity when interacting with
REST resources.

What can I do with the REST API?
The REST API includes the following REST resources:

l Exporting and importing forms
This REST resource manages interaction with export files for Nintex Forms for
Office 365. You'll use this resource to perform the following operations:

lExporting a form
You can use this operation to export an existing form as an NFP file which
can be used inNintex Forms for Office 365, in either the Forms designer or
the REST API, to import or migrate forms to other SharePoint lists or sites.
lImporting a form
This operation creates a new form from an NFP file. If the export file con-
tains a list form, you can optionally migrate the form to a different
SharePoint list, allowing Nintex Forms for Office 365 to update the metadata
from the form to match the new destination.

l Saving, publishing, and deleting forms
This REST resource manages interaction with forms for Nintex Forms for Office
365. You'll use this resource to perform the following operations:

lSaving a form
You can use this operation to overwrite an existing list form from an export
file.
lPublishing a forms
Use this operation to publish an unpublished form on Nintex Forms for Office
365.
lDeleting a form
Use this operation to delete a form in Nintex Forms for Office 365.

Related information
"Nintex Forms O365 Quick Start" on page 1

API Reference

Exporting a form
You can use the Nintex Forms for Office 365 REST API to retrieve a form in a SharePoint
list as a Nintex Forms for Office 365 export (.nfp) file.

-4-

Nintex Forms: API for SharePoint O365

The Nintex Forms Package (NFP) file is a ZIP file with the extension .NFP that contains
the configuration settings, variables, lists, content types and columns for a Nintex form.
The file is backwards compatible for with the legacy Form.XML files exported from pre-
vious version of Nintex Forms designer.

The export file can then be used for a variety of other operations in the REST API, such
as migrating an exported list form to a different list on a different SharePoint site, or
you can import the export file right into the Forms designer in Nintex Forms for Office
365.

For more information about the REST resource used to export list form, see Get Form.

Considerations
To avoid surprises while trying to export a form, take the following points into con-
sideration:

l Ensure that the form exists, and that you're allowed to access it, before trying to
export it.

l Ensure that your SharePoint authentication cookie hasn't expired.
This example avoids that issue by getting an authentication cookie from
SharePoint every time you run the example, but you can cache an authentication
cookie and avoid a round trip to SharePoint as long as the authentication cookie
hasn't expired.

l Don't modify the contents of the export file.
The export file is a binary file that uses a format specific to Nintex Forms for
Office 365. Manipulating the contents can cause unpredictable outcomes and inval-
idate the format of the export file, making it unusable.

Prerequisites
To use the example, ensure that you have the following prerequisites:

l Access to a SharePoint Online site, with Manage Web permissions for the site.
l A list form that you can export from the SharePoint Online site.
l Access to the Nintex Forms for Office 365 REST API, and an API key with which to
authorize the REST API.

l Access to any version of Visual Studio 2013.

Code
You can download the code used in this example from the following location:

O365_RESTAPI_NF_Export.zip

Note: You need to configure the code for the example before you can build and
run it. See step 4 in the following example for instructions about how to con-
figure the code for the example.

Example
The following example describes how to create a Visual Studio 2013 project to export a
list form from your SharePoint Online site, by using the REST API to get the list form
definition from the site and then saving it to an export (.nfp) file.
1. Create a new Visual Studio 2013 project, using the Console Application template

for Visual C#.

-5-

Nintex Forms: API for SharePoint O365

2. Add the following references to your new Visual Studio project.
l Microsoft.SharePoint.Client
l Microsoft.SharePoint.Client.Runtime
l System.Net
l System.Net.Http

3. In your new Visual Studio project, paste the following code into the file named
Program.cs, overwriting the existing using statements at the beginning of the
file:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.SharePoint.Client;
using System.Security;
using System.Net.Http.Headers;
using System.Net.Http;
using System.Net;
using System.IO;

-6-

Nintex Forms: API for SharePoint O365

4. Paste the following code into Program.cs, overwriting the Main() static method
already included in the Program static class, and then configure the code as
described in the comments:

// The API key and root URL for the REST API.

// TODO: Replace with your API key and root URL.

static private string apiKey = "";

static private string apiRootUrl = "https://t-
stapigcsvwus01.nintexo365test.com";

// The SharePoint site and credentials to use with the REST API.

// TODO: Replace with your site URL, user name, and password.

static private string spSiteUrl = "https://n-
intexinteraction01.sharepoint.com";

static private string spUsername = "";

static private string spPassword = "";

// The list ID of the form to export, and the file path in which to
create

// the export file.

// TODO: Replace with your form identifier and the file path

// in which to create your export file.

static private string listId = "";

static private string exportPath = "";

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

// Export the form to an export file.

ExportFormToFile();

}

All the configuration you need to do for this example happens here, and the code
provided in subsequent steps uses these variables to get an authentication cookie
from SharePoint and then export your list form from your SharePoint site.

-7-

Nintex Forms: API for SharePoint O365

5. Paste the following code into Program.cs, immediately after the Main static
method in the Program static class:
static private string GetSPOCookie()

{

// If successful, this variable contains an authentication
cookie;

// otherwise, an empty string.

string result = String.Empty;

try

{

// Construct a secure string from the provided password.

// NOTE: For sample purposes only.

var securePassword = new SecureString();

foreach (char c in spPassword) { securePassword.AppendChar
(c); }

// Instantiate a new SharePointOnlineCredentials object,
using the

// specified username and password.

var spoCredential = new SharePointOnlineCredentials(spUser-
name, securePassword);

// If successful, try to authenticate the credentials for
the

// specified site.

if (spoCredential == null)

{

// Credentials could not be created.

result = String.Empty;

}

else

{

// Credentials exist, so attempt to get the authen-
tication cookie

// from the specified site.

result = spoCredential.GetAuthenticationCookie(new Uri
(spSiteUrl));

}

}

catch (Exception ex)

{

// An exception occurred while either creating the cre-
dentials or

// getting an authentication cookie from the specified site.

Console.WriteLine(ex.ToString());

result = String.Empty;

}

-8-

Nintex Forms: API for SharePoint O365

// Return the result.

return result;

}

The GetSPOCookie static method uses the SharePoint site and credentials that
you configured in step 4 to get an authentication cookie from SharePoint.

-9-

Nintex Forms: API for SharePoint O365

6. Paste the following code into Program.cs, immediately after the code you pasted
in the previous step:
static async private void ExportFormToFile()

{

// Create a new HTTP client and configure its base address.

HttpClient client = new HttpClient();

client.BaseAddress = new Uri(spSiteUrl);

// Add common request headers for the REST API to the HTTP client

client.DefaultRequestHeaders.Add("Api-Key", apiKey);

// Get the SharePoint authorization cookie to be used by the HTTP
client

// for the request, and use it for the Authorization request
header.

string spoCookie = GetSPOCookie();

if (spoCookie != String.Empty)

{

var authHeader = new AuthenticationHeaderValue(

"cookie",

String.Format("{0} {1}", spSiteUrl, spoCookie)

);

// Add the defined authentication header to the HTTP client's

// default request headers.

client.DefaultRequestHeaders.Authorization = authHeader;

}

else

{

throw new InvalidOperationException("Cannot define Authentic-
ation header for request.");

}

Console.Write("{0}/api/v1/forms/{1}\n",

apiRootUrl.TrimEnd('/'),

Uri.EscapeUriString(listId));

// If we're at this point, we're ready to make our request.

// Note that we're making this call synchronously - you can call
the REST API

// asynchronously, as needed.

var exportFormUri = String.Format("{0}/api/v1/forms/{1}",

apiRootUrl.TrimEnd('/'),

Uri.EscapeUriString(listId));

HttpResponseMessage response = client.GetAsync(exportFormUri).Res-
ult;

Console.Write("And: {0}", response);

-10-

Nintex Forms: API for SharePoint O365

// If we're successful, write an export file from the body of the
response.

if (response.IsSuccessStatusCode)

{

// Concatenate the export file name from the response head-
ers.

string exportFilePath = String.Empty;

if (response.Content.Headers.ContentDisposition.FileName !=
null)

{

// Get the suggested file name from the Content-Dis-
position header.

exportFilePath = Path.Combine(exportPath,

response.Content.Headers.ContentDisposition.FileName.Tri-
m('"'));

}

else

{

// Use a default file name if the suggested file name
couldn't be retrieved.

exportFilePath = Path.Combine(exportPath,
"DefaultForm.nfp");

}

// The response body contains a Base64-encoded binary string,
which we'll

// asynchronously retrieve and then write to a new export
file.

byte[] exportFileContent = await response.Con-
tent.ReadAsByteArrayAsync();

System.IO.File.WriteAllBytes(exportFilePath, exportFileCon-
tent);

}

}

The ExportFormToFile static method uses an HTTP client to invoke the REST
resource provided by the REST API to export your list form from your SharePoint
site. The client's default request headers are configured, the GetAsync method
is used to invoke the REST resource, and, if successful, the response is written to
an export file.

7. Build and run the Visual Studio project.
If you've configured the variables provided in step 4 appropriately, running the
project produces an export file in the specified file path for the list you specified
from your SharePoint site. The export file's name is typically determined by the
Content-Disposition content header included in the response.

Related Information
Get Form

"Guide" on page 3

-11-

Nintex Forms: API for SharePoint O365

Importing a form
You can use the Nintex Forms for Office 365 REST API to import the contents of a Nintex
Forms for Office 365 export (.nfp) file into a SharePoint list. This process will import,
save, and publish your form where it will be available to users of the SharePoint site.

For more information about the REST resource used to export list form, see Import
Form.

Considerations
To avoid surprises while trying to import into a new form, take the following points into
consideration:

l Ensure that your SharePoint authentication cookie hasn't expired.
This example avoids that issue by getting an authentication cookie from
SharePoint every time you run the example, but you can cache an authentication
cookie and avoid a round trip to SharePoint as long as the authentication cookie
hasn't expired.

l Don't modify the contents of the export file.
The export file is a binary file that uses a format specific to Nintex Forms for
Office 365. Manipulating the contents can cause unpredictable outcomes and inval-
idate the format of the export file, making it unusable.

Prerequisites
To use the example, ensure that you have the following prerequisites:

l Ensure that your SharePoint authentication cookie hasn't expired.
This example avoids that issue by getting an authentication cookie from
SharePoint every time you run the example, but you can cache an authentication
cookie and avoid a round trip to SharePoint as long as the authentication cookie
hasn't expired.

l Don't modify the contents of the export file.
The export file is a binary file that uses a format specific to Nintex Forms for
Office 365. Manipulating the contents can cause unpredictable outcomes and inval-
idate the format of the export file, making it unusable.

Code
You can download the code used in this example from the following location:
O365_RESTAPI_NF_Import.zip

Note: You need to configure the code for the example before you can build and
run it. See step 4 in the following example for instructions about how to con-
figure the code for the example.

Example
The following example describes how to create a Visual Studio 2013 project to import a
list form to your SharePoint Online site. In this sample you will use the REST API to post
the form definition into a SharePoint list on your site.
1. Create a new Visual Studio 2013 project, using the Console Application template

for Visual C#.

-12-

Nintex Forms: API for SharePoint O365

2. Add the following references to your new Visual Studio project.
l Microsoft.SharePoint.Client
l Microsoft.SharePoint.Client.Runtime
l System.Net
l System.Net.Http

3. In your new Visual Studio project, paste the following code into the file named
Program.cs, overwriting the existing using statements at the beginning of the
file:

using System;

using System.Text;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.SharePoint.Client;

using System.Security;

using System.Net.Http.Headers;

using System.Net.Http;

using System.Net;

using System.IO;

-13-

Nintex Forms: API for SharePoint O365

4. Paste the following code into Program.cs, overwriting the Main() static method
already included in the Program static class, and then configure the code as
described in the comments:

// The API key and root URL for the REST API.

// TODO: Replace with your API key and root URL.

static private string apiKey = "";

static private string apiRootUrl = "";

// The SharePoint site and credentials to use with the REST API.

// TODO: Replace with your site URL, user name, and password.

static private string spSiteUrl = "";

static private string spUsername = "";

static private string spPassword = "";

// The list form to export, and the name of the destination list for
which

// the new form is to be imported.

// TODO: Replace with the path to your form package (NFP or XML)

// and target list title.

static private string importFileName = "";

static private string listId = "";

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

// Copy a list form from a local form file to a destination
list.

CopyFormToList();

Console.Write("Press a key to close the window.");

Console.ReadKey();

}

All the configuration you need to do for this example happens here, and the code
provided in subsequent steps uses these variables to get an authentication cookie
from SharePoint, and then import into a new list form for a SharePoint list on
your site.

-14-

Nintex Forms: API for SharePoint O365

5.Paste the following code into Program.cs, immediately after the Main static
method in the Program static class:

static private string GetSPOCookie()

{

// If successful, this variable contains an authentication
cookie;

// otherwise, an empty string.

string result = String.Empty;

try

{

// Construct a secure string from the provided password.

// NOTE: For sample purposes only.

var securePassword = new SecureString();

foreach (char c in spPassword) { securePassword.AppendChar
(c); }

// Instantiate a new SharePointOnlineCredentials object,
using the

// specified username and password.

var spoCredential = new SharePointOnlineCredentials(spUser-
name, securePassword);

// If successful, try to authenticate the credentials for
the

// specified site.

if (spoCredential == null)

{

// Credentials could not be created.

result = String.Empty;

}

else

{

// Credentials exist, so attempt to get the authen-
tication cookie

// from the specified site.

result = spoCredential.GetAuthenticationCookie(new Uri
(spSiteUrl));

}

}

catch (Exception ex)

{

// An exception occurred while either creating the cre-
dentials or

// getting an authentication cookie from the specified site.

Console.WriteLine(ex.ToString());

result = String.Empty;

}

-15-

Nintex Forms: API for SharePoint O365

// Return the result.

return result;

}

6. The GetSPOCookie static method uses the SharePoint site and credentials that
you configured in step 4 to get an authentication cookie from SharePoint.

-16-

Nintex Forms: API for SharePoint O365

7. Paste the following code into Program.cs, immediately after the code you pasted
in the previous step:

static private void CopyFormToList()

{

// Create a new HTTP client and configure its base address.

HttpClient client = new HttpClient();

client.BaseAddress = new Uri(spSiteUrl);

// Add common request headers for the REST API to the HTTP cli-
ent.

client.DefaultRequestHeaders.Accept.Add(

new MediaTypeWithQualityHeaderValue("application/json"));

client.DefaultRequestHeaders.Add("Api-Key", apiKey);

// Get the SharePoint authentication cookie to be used by the
HTTP client

// for the request, and use it for the Authorization request
header.

string spoCookie = GetSPOCookie();

if (spoCookie != String.Empty)

{

var authHeader = new AuthenticationHeaderValue(

"cookie",

String.Format("{0} {1}", spSiteUrl, spoCookie)

);

// Add the defined Authorization header to the HTTP client's

// default request headers.

client.DefaultRequestHeaders.Authorization = authHeader;

}

else

{

throw new InvalidOperationException("Cannot define Author-
ization header for request.");

}

// Read the contents of our form into a byte array, so that we
can send the

// contents as a ByteArrayContent object with the request.

if (System.IO.File.Exists(importFileName))

{

// Read the file.

byte[] exportFileContents = System.IO.File.ReadAllBytes
(importFileName);

ByteArrayContent saveContent = new ByteArrayContent
(exportFileContents);

// If we're at this point, we're ready to make our request.

-17-

Nintex Forms: API for SharePoint O365

// Note that we're making this call synchronously - you can
call the REST API

// asynchronously, as needed.

var importFormUri = String.Format("{0}/api/v1/forms/{1}",

apiRootUrl.TrimEnd('/'),

Uri.EscapeUriString(listId));

HttpResponseMessage saveResponse = client.PutAsync
(importFormUri, saveContent).Result;

if (saveResponse.IsSuccessStatusCode)

{

Console.WriteLine("Successfully imported form.");

}

else

{

Console.WriteLine("Failed to import form.");

}

}

}

The ImportForm static method uses an HTTP client to invoke the REST resource
provided by the REST API to first import your list form from a local file.
Then, the same HTTP client is used to import the contents of the file into a new
list form for the specified SharePoint list. A ByteArrayContent object is used to
encapsulate the binary contents of the export file, and the PutAsync method is
used to invoke the REST resource.

8. Build and run the Visual Studio project.
If you've configured the variables provided in step 4 appropriately, running the
project produces a copy of the specified list form associated with the specified
SharePoint list on your SharePoint site.

Note: The form name does not change. If you already have a list form
for the specified SharePoint list with a name that matches the name of
the imported form, an error occurs.

Related Information
Get Form

"Guide" on page 3

Saving a form
You can use the Nintex Forms for Office 365 REST API to save the contents of a Nintex
Forms for Office 365 export (.nfp) file into an existing SharePoint list. This sample will
allow you to post your form as a draft, and return a JSON payload with a publish relative
URI. A published form can be accessed by users of the SharePoint site.

For more information about the REST resource used to save into a form, see Save
Form.

-18-

Nintex Forms: API for SharePoint O365

Considerations
To avoid surprises while trying to save a form, take the following points into con-
sideration:

l Ensure that your SharePoint authentication cookie hasn't expired.
This example avoids that issue by getting an authentication cookie from
SharePoint every time you run the example, but you can cache an authentication
cookie and avoid a round trip to SharePoint as long as the authentication cookie
hasn't expired.

l Don't modify the contents of the export file.
The export file is a binary file that uses a format specific to Nintex Forms for
Office 365. Manipulating the contents can cause unpredictable outcomes and inval-
idate the format of the export file, making it unusable.

Prerequisites
To use the example, ensure that you have the following prerequisites:

l Access to a SharePoint Online site, with Manage Web permissions for the site.
l A list form that you can export from the SharePoint Online site.
l Access to the Nintex Forms for Office 365 REST API, and an API key with which to
authorize the REST API.

l Access to any version of Visual Studio 2013.

Code
You can download the code used in this example from the following location:
O365_RESTAPI_NF_Save.zip

Note: You need to configure the code for the example before you can build and
run it. See step 4 in the following example for instructions about how to con-
figure the code for the example.

Example
The following example describes how to create a Visual Studio 2013 project to update
an existing form from an export file previously exported from that Nintex Forms.
1. Create a new Visual Studio 2013 project, using the Console Application template

for Visual C#.
2. Add the following references to your new Visual Studio project.

l Microsoft.SharePoint.Client
l Microsoft.SharePoint.Client.Runtime
l System.Net
l System.Net.Http

-19-

Nintex Forms: API for SharePoint O365

3. In your new Visual Studio project, paste the following code into the file named
Program.cs, overwriting the existing using statements at the beginning of the
file:
using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.SharePoint.Client;

using System.Security;

using System.Net.Http.Headers;

using System.Net.Http;

using System.Net;

using System.IO;

-20-

Nintex Forms: API for SharePoint O365

4. Paste the following code into Program.cs, overwriting the Main() static method
already included in the Program static class, and then configure the code as
described in the comments:

// The API key and root URL for the REST API.

// TODO: Replace with your API key and root URL.

static private string apiKey = "";

static private string apiRootUrl = "";

// The SharePoint site and credentials to use with the REST API.

// TODO: Replace with your site URL, user name, and password.

static private string spSiteUrl = "";

static private string spUsername = "";

static private string spPassword = "";

// The list form to export, and the name of the destination list for
which

// the new form is to be imported.

// TODO: Replace with your form identifier and list title.

static private string listId = "";

static private string importFileName = "";

/// <Summary>

/// The main entry point for the application.

/// </Summary>

[STAThread]

static void Main()

{

// Save a lists.

SaveForm();

Console.Write("Press any key to close window.");

Console.ReadKey();

}

All the configuration you need to do for this example happens here, and the code
provided in subsequent steps uses these variables to get an authentication cookie
from SharePoint, read the specified export file, and then save the contents of the
export file to the specified list.

-21-

Nintex Forms: API for SharePoint O365

5. Paste the following code into Program.cs, immediately after the Main static
method in the Program static class:

static private string GetSPOCookie()

{

// If successful, this variable contains an authentication
cookie;

// otherwise, an empty string.

string result = String.Empty;

try

{

// Construct a secure string from the provided password.

// NOTE: For sample purposes only.

var securePassword = new SecureString();

foreach (char c in spPassword) { securePassword.AppendChar
(c); }

// Instantiate a new SharePointOnlineCredentials object,
using the

// specified username and password.

var spoCredential = new SharePointOnlineCredentials(spUser-
name, securePassword);

// If successful, try to authenticate the credentials for
the

// specified site.

if (spoCredential == null)

{

// Credentials could not be created.

result = String.Empty;

}

else

{

// Credentials exist, so attempt to get the authen-
tication cookie

// from the specified site.

result = spoCredential.GetAuthenticationCookie(new Uri
(spSiteUrl));

}

}

catch (Exception ex)

{

// An exception occurred while either creating the cre-
dentials or

// getting an authentication cookie from the specified site.

Console.WriteLine(ex.ToString());

result = String.Empty;

}

-22-

Nintex Forms: API for SharePoint O365

// Return the result.

return result;

}

The GetSPOCookie static method uses the SharePoint site and credentials that
you configured in step 4 to get an authentication cookie from SharePoint.

-23-

Nintex Forms: API for SharePoint O365

6. Paste the following code into Program.cs, immediately after the code you pasted
in the previous step:

static private void SaveForm()

{

// Create a new HTTP client and configure its base address.

HttpClient client = new HttpClient();

client.BaseAddress = new Uri(spSiteUrl);

// Add common request headers for the REST API to the HTTP cli-
ent.

new MediaTypeWithQualityHeaderValue("application/json");

client.DefaultRequestHeaders.Add("Api-Key", apiKey);

// Get the SharePoint authentication cookie to be used by the
HTTP client

// for the request, and use it for the Authorization request
header.

string spoCookie = GetSPOCookie();

if (spoCookie != String.Empty)

{

var authHeader = new AuthenticationHeaderValue(

"cookie",

String.Format("{0} {1}", spSiteUrl, spoCookie)

);

// Add the defined Authorization header to the HTTP client's

// default request headers.

client.DefaultRequestHeaders.Add("Test-Environment", "01");
//remove this for my sample

client.DefaultRequestHeaders.Authorization = authHeader;

}

else

{

throw new InvalidOperationException("Cannot define Author-
ization header for request.");

}

// Read the contents of our form into a byte array, so that we
can send the

// contents as a ByteArrayContent object with the request.

if (System.IO.File.Exists(importFileName))

{

// Read the file.

byte[] exportFileContents = System.IO.File.ReadAllBytes
(importFileName);

-24-

Nintex Forms: API for SharePoint O365

ByteArrayContent saveContent = new ByteArrayContent
(exportFileContents);

Console.Write("Loading file...");

Console.Write(saveContent);

// If we're at this point, we're ready to make our request.

// Note that we're making this call synchronously - you can
call the REST API

// asynchronously, as needed.

var importFormUri = String.Format("{0}/api/v1/forms/{1}",

apiRootUrl.TrimEnd('/'),

Uri.EscapeUriString(listId));

HttpResponseMessage saveResponse = client.PutAsync
(importFormUri, saveContent).Result;

if (saveResponse.IsSuccessStatusCode)

{

Console.WriteLine("Successfully saved form.");

}

else

{

Console.WriteLine("Failed to saved form.");

}

}

}

The SaveForm static method first reads the specified export file, and then uses
an HTTP client to invoke the REST resource provided by the REST API to save the
contents of the export file to the specified list on your SharePoint site. The cli-
ent's default request headers are configured, and the PutAsync method is used
to invoke the REST resource.

7. Build and run the Visual Studio project.
If you've configured the variables provided in step 4 appropriately, running the
project updates the specified list with the contents of the specified export file.

Related Information
Import Form

"Guide" on page 3

Publishing a form
You can use the Nintex Forms for Office 365 REST API to publish an existing SharePoint
form. This operation makes the latest draft version of the form available for use.

For more information about the REST resource used to save into a list, see Publish
Form.

Considerations
To avoid surprises while trying to publish a form, take the following points into con-
sideration:

-25-

Nintex Forms: API for SharePoint O365

l Ensure that the form exists, and that you're allowed to access it, before trying to
publish it.

l Ensure that your SharePoint authentication cookie hasn't expired.
This example avoids that issue by getting an authentication cookie from
SharePoint every time you run the example, but you can cache an authentication
cookie and avoid a round trip to SharePoint as long as the authentication cookie
hasn't expired.

l Don't modify the contents of the export file.
The export file is a binary file that uses a format specific to Nintex Forms for
Office 365. Manipulating the contents can cause unpredictable outcomes and inval-
idate the format of the export file, making it unusable.

Prerequisites
To use the example, ensure that you have the following prerequisites:

l Access to a SharePoint Online site, with Manage Web permissions for the site.
l A list form that you can export from the SharePoint Online site.
l Access to the Nintex Forms for Office 365 REST API, and an API key with which to
authorize the REST API.

l Access to any version of Visual Studio 2013.

Code
You can download the code used in this example from the following location:
O365_RESTAPI_NF_Publish.zip

Note: You need to configure the code for the example before you can build and
run it. See step 4 in the following example for instructions about how to con-
figure the code for the example.

Example
The following example describes how to create a Visual Studio 2013 project to publish
an existing form on a SharePoint site.
1. Create a new Visual Studio 2013 project, using the Console Application template

for Visual C#.
2. Add the following references to your new Visual Studio project.

l Microsoft.SharePoint.Client
l Microsoft.SharePoint.Client.Runtime
l System.Net
l System.Net.Http

-26-

Nintex Forms: API for SharePoint O365

3. In your new Visual Studio project, paste the following code into the file named
Program.cs, overwriting the existing using statements at the beginning of the
file:
using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.SharePoint.Client;

using System.Security;

using System.Net.Http.Headers;

using System.Net.Http;

using System.Net;

using System.IO;

-27-

Nintex Forms: API for SharePoint O365

4. Paste the following code into Program.cs, overwriting the Main() static method
already included in the Program static class, and then configure the code as
described in the comments:

// The API key and root URL for the REST API.

// TODO: Replace with your API key and root URL.

static private string apiKey = "";

static private string apiRootUrl = "";

// The SharePoint site and credentials to use with the REST API.

// TODO: Replace with your site URL, user name, and password.

static private string spSiteUrl = "";

static private string spUsername = "";

static private string spPassword = "";

// The list form to export, and the name of the destination list for
which

// the new form is to be imported.

// TODO: Replace with your form identifier and list title.

static private string listId = "";

/// <Summary>

/// The main entry point for the application.

/// </Summary>

[STAThread]

static void Main()

{

// Copy a list form from a source list to a destination list.

PublishForm();

Console.Write("Press any key to close window.");

Console.ReadKey();

}

All the configuration you need to do for this example happens here, and the code
provided in subsequent steps uses these variables to get an authentication cookie
from SharePoint, read the specified export file, and then save the contents of the
export file to the specified list.

-28-

Nintex Forms: API for SharePoint O365

5. Paste the following code into Program.cs, immediately after the Main static
method in the Program static class:

static private string GetSPOCookie()

{

// If successful, this variable contains an authentication
cookie;

// otherwise, an empty string.

string result = String.Empty;

try

{

// Construct a secure string from the provided password.

// NOTE: For sample purposes only.

var securePassword = new SecureString();

foreach (char c in spPassword) { securePassword.AppendChar
(c); }

// Instantiate a new SharePointOnlineCredentials object,
using the

// specified username and password.

var spoCredential = new SharePointOnlineCredentials(spUser-
name, securePassword);

// If successful, try to authenticate the credentials for
the

// specified site.

if (spoCredential == null)

{

// Credentials could not be created.

result = String.Empty;

}

else

{

// Credentials exist, so attempt to get the authen-
tication cookie

// from the specified site.

result = spoCredential.GetAuthenticationCookie(new Uri
(spSiteUrl));

}

}

catch (Exception ex)

{

// An exception occurred while either creating the cre-
dentials or

// getting an authentication cookie from the specified site.

Console.WriteLine(ex.ToString());

result = String.Empty;

}

-29-

Nintex Forms: API for SharePoint O365

// Return the result.

return result;

}

The GetSPOCookie static method uses the SharePoint site and credentials that
you configured in step 4 to get an authentication cookie from SharePoint.

-30-

Nintex Forms: API for SharePoint O365

6. Paste the following code into Program.cs, immediately after the code you pasted
in the previous step:

static private void PublishForm()

{

// Create a new HTTP client and configure its base address.

HttpClient client = new HttpClient();

client.BaseAddress = new Uri(spSiteUrl);

// Add common request headers for the REST API to the HTTP cli-
ent.

client.DefaultRequestHeaders.Accept.Add(

new MediaTypeWithQualityHeaderValue("application/json"));

client.DefaultRequestHeaders.Add("Api-Key", apiKey);

// Get the SharePoint authorization cookie to be used by the
HTTP client

// for the request, and use it for the Authorization request
header.

string spoCookie = GetSPOCookie();

if (spoCookie != String.Empty)

{

var authHeader = new AuthenticationHeaderValue(

"cookie",

String.Format("{0} {1}", spSiteUrl, spoCookie)

);

// Add the defined authentication header to the HTTP cli-
ent's

// default request headers.

client.DefaultRequestHeaders.Authorization = authHeader;

}

else

{

throw new InvalidOperationException("Cannot define Author-
ization header for request.");

}

// Console test block

var testURI = String.Format("{0}/api/v1/forms/{1}/publish",

apiRootUrl.TrimEnd('/'),

Uri.EscapeUriString(listId));

Console.Write(testURI,"\n");

// If we're at this point, we're ready to make our request.

// Note that we're making this call synchronously - you can call
the REST API

// asynchronously, as needed.

-31-

Nintex Forms: API for SharePoint O365

var publishFormUri = String.Format("{0}/api/v1/forms/{1}/pub-
lish",

apiRootUrl.TrimEnd('/'),

Uri.EscapeUriString(listId));

HttpResponseMessage publishResponse = client.PostAsync(pub-
lishFormUri, new StringContent("")).Result;

if (publishResponse.IsSuccessStatusCode)

{

Console.WriteLine("Successfully published form.");

}

else

{

Console.WriteLine("Failed to publish form.");

}

}

The PublishForm static method uses an HTTP client to invoke the REST resource
provided by the REST API to publish the specified form on your SharePoint site.
The client's default request headers are configured, and the PostAsync method
is used to invoke the REST resource, with an empty string as content.

7. Build and run the Visual Studio project.
If you've configured the variables provided in step 4 appropriately, running the
project updates the specified list with the contents of the specified export file.

Related Information
Get Form

"Guide" on page 3

Delete a form
You can use the Nintex Forms for Office 365 REST API to publish an existing SharePoint
form. This operation makes the latest draft version of the form available for use.

For more information about the REST resource used to save into a list, see Publish
Form.

Considerations
To avoid surprises while trying to publish a form, take the following points into con-
sideration:

l Ensure that the form exists, and that you're allowed to access it, before trying to
publish it.

l Ensure that your SharePoint authentication cookie hasn't expired.
This example avoids that issue by getting an authentication cookie from
SharePoint every time you run the example, but you can cache an authentication
cookie and avoid a round trip to SharePoint as long as the authentication cookie
hasn't expired.

l Don't modify the contents of the export file.
The export file is a binary file that uses a format specific to Nintex Forms for
Office 365. Manipulating the contents can cause unpredictable outcomes and inval-
idate the format of the export file, making it unusable.

-32-

Nintex Forms: API for SharePoint O365

Prerequisites
To use the example, ensure that you have the following prerequisites:

l Access to a SharePoint Online site, with Manage Web permissions for the site.
l A list form that you can export from the SharePoint Online site.
l Access to the Nintex Forms for Office 365 REST API, and an API key with which to
authorize the REST API.

l Access to any version of Visual Studio 2013.

Code
You can download the code used in this example from the following location:

O365_RESTAPI_NF_Delete.zip

Note: You need to configure the code for the example before you can build and
run it. See step 4 in the following example for instructions about how to con-
figure the code for the example.

Example
The following example describes how to create a Visual Studio 2013 project to publish
an existing form on a SharePoint site.
1. Create a new Visual Studio 2013 project, using the Console Application template

for Visual C#.
2. Add the following references to your new Visual Studio project.

l Microsoft.SharePoint.Client
l Microsoft.SharePoint.Client.Runtime
l System.Net
l System.Net.Http

3. In your new Visual Studio project, paste the following code into the file named
Program.cs, overwriting the existing using statements at the beginning of the
file:

using System;

using System.Text;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.SharePoint.Client;

using System.Security;

using System.Net.Http.Headers;

using System.Net.Http;

using System.Net;

using System.IO;

-33-

Nintex Forms: API for SharePoint O365

4. Paste the following code into Program.cs, overwriting the Main() static method
already included in the Program static class, and then configure the code as
described in the comments:
// The API key and root URL for the REST API.

// TODO: Replace with your API key and root URL.

static private string apiKey = "";

static private string apiRootUrl = "";

// The SharePoint site and credentials to use with the REST API.

// TODO: Replace with your site URL, user name, and password.

static private string spSiteUrl = "";

static private string spUsername = "";

static private string spPassword = "";

// The list form to export, and the name of the destination list for
which

// the new form is to be imported.

// TODO: Replace with the path to your form package (NFP or XML)

// and target list title.

static private string importFileName = "";

static private string listId = "";

/// <Summary>

/// The main entry point for the application.

/// </Summary>

[STAThread]

static void Main()

{

// Copy a list form from a local form file to a destination
list.

DeleteForm();

Console.Write("Press a key to close the window.");

Console.ReadKey();

}

All the configuration you need to do for this example happens here, and the code
provided in subsequent steps uses these variables to get an authentication cookie
from SharePoint, read the specified export file, and then save the contents of the
export file to the specified list.

-34-

Nintex Forms: API for SharePoint O365

5. Paste the following code into Program.cs, immediately after the Main static
method in the Program static class:
static private string GetSPOCookie()

{

// If successful, this variable contains an authentication
cookie;

// otherwise, an empty string.

string result = String.Empty;

try

{

// Construct a secure string from the provided password.

// NOTE: For sample purposes only.

var securePassword = new SecureString();

foreach (char c in spPassword) { securePassword.AppendChar
(c); }

// Instantiate a new SharePointOnlineCredentials object,
using the

// specified username and password.

var spoCredential = new SharePointOnlineCredentials(spUser-
name, securePassword);

// If successful, try to authenticate the credentials for
the

// specified site.

if (spoCredential == null)

{

// Credentials could not be created.

result = String.Empty;

}

else

{

// Credentials exist, so attempt to get the authen-
tication cookie

// from the specified site.

result = spoCredential.GetAuthenticationCookie(new Uri
(spSiteUrl));

}

}

catch (Exception ex)

{

// An exception occurred while either creating the cre-
dentials or

// getting an authentication cookie from the specified site.

Console.WriteLine(ex.ToString());

result = String.Empty;

}

-35-

Nintex Forms: API for SharePoint O365

// Return the result.

return result;

}

The GetSPOCookie static method uses the SharePoint site and credentials that
you configured in step 4 to get an authentication cookie from SharePoint.

-36-

Nintex Forms: API for SharePoint O365

6. Paste the following code into Program.cs, immediately after the code you pasted
in the previous step:
static private void DeleteForm()

{

// Create a new HTTP client and configure its base address.

HttpClient client = new HttpClient();

client.BaseAddress = new Uri(spSiteUrl);

// Add common request headers for the REST API to the HTTP cli-
ent.

client.DefaultRequestHeaders.Accept.Add(

new MediaTypeWithQualityHeaderValue("application/json"));

client.DefaultRequestHeaders.Add("Api-Key", apiKey);

// Get the SharePoint authentication cookie to be used by the
HTTP client

// for the request, and use it for the Authorization request
header.

string spoCookie = GetSPOCookie();

if (spoCookie != String.Empty)

{

var authHeader = new AuthenticationHeaderValue(

"cookie",

String.Format("{0} {1}", spSiteUrl, spoCookie)

);

// Add the defined Authorization header to the HTTP client's

// default request headers.

client.DefaultRequestHeaders.Authorization = authHeader;

}

else

{

throw new InvalidOperationException("Cannot define Author-
ization header for request.");

}

// Read the contents of our form into a byte array, so that we
can send the

// contents as a ByteArrayContent object with the request.

if (System.IO.File.Exists(importFileName))

{

// If we're at this point, we're ready to make our request.

// Note that we're making this call synchronously - you can
call the REST API

// asynchronously, as needed.

-37-

Nintex Forms: API for SharePoint O365

var importFormUri = String.Format("{0}/api/v1/forms/{1}",

apiRootUrl.TrimEnd('/'),

Uri.EscapeUriString(listId));

HttpResponseMessage saveResponse = client.DeleteAsync
(importFormUri).Result;

if (saveResponse.IsSuccessStatusCode)

{

Console.WriteLine(Successfully deleted form.");

}

else

{

Console.WriteLine("Failed to delete form.");

}

}

}

The DeleteForm static method uses an HTTP client to invoke the REST resource
provided by the REST API to publish the specified form on your SharePoint site.
The client's default request headers are configured, and the PostAsync method
is used to invoke the REST resource, with an empty string as content.

7. Build and run the Visual Studio project.
If you've configured the variables provided in step 4 appropriately, running the
project updates the specified list with the contents of the specified export file.

Related Information
Delete Form

"Guide" on page 3

Base URL
All of the operations provided by the Nintex Forms for Office 365 REST API use the fol-
lowing root path as the base URL, replacing {customer} with the customer-specific por-
tion of the URL and {version} with the appropriate version of the REST API:
{customer}.nintexo365.com/api/{version}

For example, the following URL represents a request to export a list form, using version
1 of the REST API implemented for a fictional customer named Crestan:
https://crestan.nintexo365.com/api/v1/forms/fd4f1cd2-7ea7-4b62-9751-0ff83ab609f7

The REST API is served over the HTTPS protocol. To ensure data privacy, unencrypted
HTTP is not supported.

Related Information

REST API Resources

Authentication and authorization
The Nintex Forms for Office 365 REST API requires that you have both a subscription to
the REST API and authorization to use the REST API on a specified SharePoint site.

l "Authenticating operations for SharePoint Online" on the next page
l "Authorizing operations for the Nintex Forms for Office 365 REST API" on page 41

-38-

Nintex Forms: API for SharePoint O365

Authenticating operations for SharePoint Online

The Nintex Forms for Office 365 REST API takes advantage of Office 365 passive authen-
tication capabilities, using SharePoint Online credentials and Windows Azure Active Dir-
ectory to authorize an operation on a specified SharePoint site. An authorization cookie,
retrieved from SharePoint Online, that represents a valid credential for the specified
site must be provided to authorize the invocation of operations included with the
REST API.

You must include the Authorization request header with every operation. The request
header must contain a cookie that uses the following format, replacing <site> with the
SharePoint site URL and <authcookie> with a valid SharePoint SPOIDCRL or FedAuth
authentication cookie for the specified site, as needed, to authenticate the request with
SharePoint.
cookie <site> <authcookie>

Required SharePoint permissions

Before retrieving an authentication cookie, ensure that the credential to be used for the
specified SharePoint site has the ability to perform all administration tasks for the Web
site and manage website content. In other words, the credential must belong to a role in
SharePoint that has the Manage Web permission for the specified SharePoint site; oth-
erwise, an error occurs when the authentication cookie is used to invoke a REST API
operation.
Obtaining an authentication cookie

You can use the GetAuthenticationCookie operation of the SharePointOn-
lineCredentials object, in the Microsoft.SharePoint.Client namespace, to obtain a
SPOIDCRL authentication cookie for use with the Nintex Forms for Office 365 REST API.

The Microsoft.SharePoint.Client namespace is included with the SharePoint Online
Client Side Object Model (CSOM). You can add a reference to the SharePoint Online
CSOM to your Visual Studio 2013 project as a NuGet package, provided by the Office
Developer Platform Team on NuGet at https://www.nu-
get.org/packages/Microsoft.SharePointOnline.CSOM/16.1.3912.1204.

Visual C#
The following Visual C# method demonstrates how to use the GetAuthentic-
ationCookie method to get an authentication cookie for a specified SharePoint site,
using a specified username and password.
/// <summary>

/// Gets a SharePoint Online authentication cookie from the specified site, using

/// the specified username and password.

/// </summary>

/// <param name="siteUrl">The site with which to authenticate.</param>

/// <param name="username">The username of the credentials to authenticate.</param>

/// <param name="password">The password of the credentials to authenticate.</param>

/// <returns>If successful, a SharePoint Online authentication cookie;

/// otherwise, an empty string.</returns>

static public string GetSPOCookie(string siteUrl, string username, string password)

{

// If successful, this variable contains an authentication cookie;

// otherwise, an empty string.

string result = String.Empty;

try

{

// Construct a secure string from the provided password.

// NOTE: For sample purposes only.

var securePassword = new SecureString();

foreach (char c in password) { securePassword.AppendChar(c); }

// Instantiate a new SharePointOnlineCredentials object, using the

// specified username and password.

var spoCredential = new SharePointOnlineCredentials(username, securePassword);

-39-

Nintex Forms: API for SharePoint O365

https://msdn.microsoft.com/EN-US/library/microsoft.sharepoint.client.sharepointonlinecredentials.getauthenticationcookie.aspx
https://msdn.microsoft.com/en-us/library/microsoft.sharepoint.client.sharepointonlinecredentials.aspx
https://msdn.microsoft.com/en-us/library/microsoft.sharepoint.client.sharepointonlinecredentials.aspx
https://www.nuget.org/packages/Microsoft.SharePointOnline.CSOM/16.1.3912.1204

// If successful, try to authenticate the credentials for the

// specified site.

if (spoCredential == null)

{

// Credentials could not be created.

result = String.Empty;

}

else

{

// Credentials exist, so attempt to get the authentication cookie

// from the specified site.

result = spoCredential.GetAuthenticationCookie(new Uri(siteUrl));

}

}

catch (Exception ex)

{

// An exception occurred while either creating the credentials or

// getting an authentication cookie from the specified site.

Console.WriteLine(ex.ToString());

result = String.Empty;

}

// Return the result.

return result;

}

Windows PowerShell
The following Windows PowerShell script example demonstrates how to use the
GetAuthenticationCookie method to get an authentication cookie for a specified
SharePoint site, using a specified credential. The PSCredential object can provides an
interactive interface, if needed, in which a credential can be supplied by the user, or you
can pipe a valid PSCredential object directly to the Windows PowerShell script at invoc-
ation.
<#

.SYNOPSIS

Retrieves a SharePoint Online authentication cookie for the specified SharePoint URI and cre-

dential.

.DESCRIPTION

.PARAMETER SiteURI

Required. A System.Uri object that represents the SharePoint site for the authentication cookie.

.PARAMETER Credential

Required. A PSCredential object that represents the credential for the authentication cookie.

.EXAMPLE

Get-SPOCookie -SiteURI "https://crestan.sharepoint.com" -Credential "spowner@crestan.com"

#>

[CmdletBinding()]

param (

[Parameter(Mandatory=$true)]

[System.Uri]$SiteURI,

[Parameter(Mandatory=$true)]

[PSCredential]$Credential

)

Load the SharePoint client assemblies into the PowerShell session.

If needed, change the paths to match the location of the SharePoint 2013 client assemblies. The

paths provided

below are the default locations for the SharePoint 2013 client assemblies.

Add-Type -Path "C:\Program Files\Common Files\Microsoft Shared\Web Server Exten-

sions\15\ISAPI\Microsoft.SharePoint.Client.dll"

Add-Type -Path "C:\Program Files\Common Files\Microsoft Shared\Web Server

Extensions\15\ISAPI\Microsoft.SharePoint.Client.Runtime.dll"

Create a new SharePointOnlineCredentials object, using the specified credential.

-40-

Nintex Forms: API for SharePoint O365

https://msdn.microsoft.com/en-us/library/system.management.automation.pscredential.aspx

$SPOCred = New-Object -TypeName Microsoft.SharePoint.Client.SharePointOnlineCredentials -Argu-

mentList $Credential.UserName, $Credential.Password

Return the authentication cookie from the SharePointOnlineCredentials object,

using the specified SharePoint site.

$SPOCred.GetAuthenticationCookie($SiteURI)

Authorizing operations for the Nintex Forms for Office 365 REST API

The Nintex Forms for Office 365 REST API requires an API key, issued by Nintex, to
authorize the invocation of operations included in the REST API. You must include the
API key in the Api-Key request header included with every operation.
Obtaining an API key

You can obtain an API key by contacting your Nintex representative.

Related Information

REST API Resources

Getting Your SharePoint 0365 Credentials via REST
This topic describes how to get your authentication cookie via REST in a workflow using
the Nintex Forms O365 API only using HTTP.

Using HTTP to establish your credentials with the SharePoint O365 tenant may be useful
if you are developing applications in a context outside of the SharePoint and .NET. If you
are using SharePoint it probably is more expedient to follow the instructions at
"Authentication and authorization" on page 38, or refer to the code samples in the
"Guide" on page 3 which retrieves an authorization cookie during execution.

The authentication process involves five steps, which you can see in the sequence dia-
gram below.

1.Send Security Assertion Markup Language (SAML) request, including username
and password to Microsoft Online.

2.Receive SAML return payload which includes the security token.
3.Post the security token to your SharePoint O365 tenancy.
4.Receive authentication cookies.
5.Send request including authentication cookies.

The actors include:
A. Your application
B. Microsoft Online
C. SharePoint O365 tenant

Sequence diagram for retrieving your authentication cookies

-41-

Nintex Forms: API for SharePoint O365

Get Your Authentication Cookies

You will need authentication cookies to work with the Forms for Office 365 API. You can
retrieve the cookies by connecting with Microsoft Online, and then using your token to
get an access token form your tenancy, and then use the access token to get the author-
ization cookies.
Send SAML request, including username and password, to Microsoft Online

Provide the username and password and the URL at which we want access to the
SharePoint Online Security Token Service along with an envelope in the request body.

Send to the endpoint: https://login.microsoftonline.com/extSTS.srf

In the following template replace the username, password, and SharePoint address with
your values:
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing"

xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd">

<s:Header>

<a:Action s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue</a:Action>

<a:ReplyTo>

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>

</a:ReplyTo>

<a:To s:mustUnderstand="1">https://login.microsoftonline.com/extSTS.srf</a:To>

<o:Security s:mustUnderstand="1"

xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-

1.0.xsd">

<o:UsernameToken>

<o:Username>Username@yourdomain.sharepoint.com</o:Username>

<o:Password>password</o:Password>

</o:UsernameToken>

</o:Security>

</s:Header>

<s:Body>

<t:RequestSecurityToken xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust">

<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<a:EndpointReference>

<a:Address>https://yourdomain.sharepoint.com</a:Address>

</a:EndpointReference>

</wsp:AppliesTo>

<t:KeyType>http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey</t:KeyType>

<t:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Issue</t:RequestType>

<t:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</t:TokenType>

</t:RequestSecurityToken>

</s:Body>

-42-

Nintex Forms: API for SharePoint O365

</s:Envelope>

Receive SAML return payload which includes the security token

The return to your SAML request contains the security token that you will need to use to
retrieve the access token from your SharePoint site.

You can find your security token in the BinarySecurityToken element. In the following
example of a SAML payload you can find the token between the <wsse:Bin-
arySecurityToken Id="Compact0">security token</wsse:BinarySecurityToken>.

Example:
<wsse:BinarySecurityToken Id="Compact0">
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" xmlns:wsse="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:wsa-

a="http://www.w3.org/2005/08/addressing">

<S:Header>

<wsa:Action xmlns:S="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa-

a="http://www.w3.org/2005/08/addressing" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="Action" S:mustUnder-

stand="1">http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue</wsa:Action>

<wsa:To xmlns:S="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa-

a="http://www.w3.org/2005/08/addressing" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="To" S:mustUnder-

stand="1">http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To>

<wsse:Security S:mustUnderstand="1">

<wsu:Timestamp xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse-

curity-utility-1.0.xsd" wsu:Id="TS">

<wsu:Created>2016-02-19T21:05:13Z</wsu:Created>

<wsu:Expires>2016-02-19T21:10:13Z</wsu:Expires>

</wsu:Timestamp>

</wsse:Security>

</S:Header>

<S:Body>

<wst:RequestSecurityTokenResponse xmlns:S="http://www.w3.org/2003/05/soap-envelope" xmlns:wst-

t="http://schemas.xmlsoap.org/ws/2005/02/trust" xmlns:wsse="http://docs.oasis-open.or-

g/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:sam-

l="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:wsp-

p="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:psf="http://schemas.microsoft.com/Passport/SoapServices/SOAPFault">

<wst:TokenType>urn:passport:compact</wst:TokenType>

<wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing">

<wsa:EndpointReference>

<wsa:Address>https://nintexinteraction01.sharepoint.com/FormsOnline/api</wsa:Address>

</wsa:EndpointReference>

</wsp:AppliesTo>

<wst:Lifetime>

<wsu:Created>2016-02-19T21:05:13Z</wsu:Created>

<wsu:Expires>2016-02-20T21:05:13Z</wsu:Expires>

-43-

Nintex Forms: API for SharePoint O365

</wst:Lifetime>

<wst:RequestedSecurityToken>

<wsse:BinarySecurityToken Id="Co-

mpact0">t-

=EwA4A06hBwAUNfDkMme61kIdXqvj9tWnUbHtXWEAAQbiCLW4yppnBO220/abLI1J6M4oq50n8KOFhGdsUnqeUGYbhWVp6dmhY5DY3nSEgyKuVFpKt9EmDBlMUAvf1yuSZZfygYcg+YwIsZeqwT2CrrCxdj2A7p4g2yeBMvAltwGNhL8D6GDUY07nGLsuOeM1iAMnboqvhCngzsUSlJIUq5/wmME/Bse8Up+kJyB/QwlZEJ0F7Ihlm1so4yc1e3mFn286In/IDF5d6wkem2QC5L0LZy0BOoWt7QVp7XngDeDOO/O8XGkNIIZK1wlmJkINkucFnkTn9rp79wtVYoYyX8XM2dR9ZsU5g/+x0WmiRvoYqQ24qaJrUCBr4HKsWx4DZgAACPwaUVOtfHN4CALZKVllXOItKOA2sbENaLY8DytC+Zo+NOzjeORMInNuWDLIqaMQx7BRKE27T/i9T9QQMXOb6y2l5R5m8PKA9WhA/sbOf+Q77ofvHhsJWUD3LghSNpcruFmpanXphv1tS7/f9nb5IzfPrzeOITmTARyg9PKSJWjXBJkm6zjlo0KCRy4k5zVa7xupQk2biP/vQ4s01o6TlbK1ncP+Swc3cEg6uS39gvYRovNyBqLQWnVf+zvfcStdcihYEJembF7oHhvKaOKeWjZqp3T3Bq/VSC2/jRAseGVsAMdhebU1y+2Gk+oDQuinFBb3MIIEjCW/LCv0vtfTvwmDsRuaXOLEhYFL79HWT1odBAX25wK3jVdZpPYuYgj/xNCrCG2TN05Z+2jLZb4hY3Rv3Y/Nt7w8BSGq/M5q6321zAURujmT7fiMWD5O7Q7QBM8YV0LGckRO1cPLRskS0Clg80RhYoSslwfQkG/RIxYaddBDcVoUzxEivb7CWTfyXBD5REdZVyq0QpyD8IB3L5JASsj31fM1ttcd33vK8AEXfmAa6paBoDH+cGMin8T1jKr/WlbgtC+b5h8NQhxFVXbxG1a142ehqmqSJ/aviidr+WRgnrMCcCYpQILafIabrqxxhCYjsor1kCqC7eQpW1YhT+AkUHIXRia6/qidjNPadcE0ILnhOAmhUE3tfRlV/HdMgwI=&p=</wsse:BinarySecurityToken>

</wst:RequestedSecurityToken>

<wst:RequestedAttachedReference>

<wsse:SecurityTokenReference>

<wsse:Reference URI="bzi+G/bkxv72sxupv7IGHGhG+Ww="></wsse:Reference>

</wsse:SecurityTokenReference>

</wst:RequestedAttachedReference>

<wst:RequestedUnattachedReference>

<wsse:SecurityTokenReference>

<wsse:Reference URI="bzi+G/bkxv72sxupv7IGHGhG+Ww="></wsse:Reference>

</wsse:SecurityTokenReference>

</wst:RequestedUnattachedReference>

</wst:RequestSecurityTokenResponse>

</S:Body>

</S:Envelope>

Post the security token to your SharePoint Online tenancy

Once the security token has been retrieved, post the token to SharePoint 0365 to get
your authorization cookies. Post the token as the body to the following endpoint:

https://yourdomain.sharepoint.com/_forms/default.aspx?wa=wsignin1.0

Note: You will want to make sure you change the HTML entity (&) at the
end of the token to a literal ampersand (&).

Receive authentication cookies

The response from the request will include the request digest in the XML response and
two cookies that you can use to send a request to the API endpoint. Retrieve the value
of both cookies. The following table contains examples of the authentication cookies.

-44-

Nintex Forms: API for SharePoint O365

Key Value
FedAut
h

77u/PD94bWwgdmVyc2lv bj0iMS4wIiBlbmNvZGlu Zz0idXRmLTgiPz48U1A+
RmFsc2UsMGguZnxtZW1i ZXJzaGlwfDEwMDNiZmZk
ODkzMzFlMGZAbGl2ZS5j b20sMCMuZnxtZW1iZXJz
aGlwfHNwc2l0ZWFkbWlu QG5pbnRleGludGVyYWN0
aW9uMDEub25taWNyb3Nv ZnQuY29tLDEzMTAxMTU4
MDM0MDYyMTYzNjsxMzA0 ODIxOTkyMDAwMDAwMDAs
RmFsc2UsVVNTUTdPNEV6 bzQ3azBtak5Rb2RnWHlm
ZTZHOEZjZ3FLVmQxeWlN aG1xb0VIeVdhdXgxMW9N
KzlhZ2w2ZE1hZFIzZW9p b2EzN3RDSmFFTjVUSGtl
UHNHS1lCYzMzd2EzdDJI V0J0R043MStlTmkybmNC
cFE1QWg1Yjg5L0ozWW80 N01xd0VvczBWcFMzV2tE
TWYxSTRvZktBL0kzNFZO M0RGbUxvdDVQNVFmUDNL
S3lMYWlUakkxdmp1azZG enp0MHRHdDZCcUE4cFF0
V0JweHNmeVRiNDZEVmZ5 Kzg1WkFONVBldFIxWFVv
SUlHKytrREhLV1JyVnYz SzVaQkJ6VHFvZzNrTTBO
V0dYaWhOVGhseTV0bk1Y NVpXZmJrUEt1M2hHUTBh
dE4yUU1JRDBmSmVZZ1Q0 bjRsdG5rWnozeWw2UmRj
WXgzUCt3WklOMHNMSThi QkdRPT0saHR0cHM6Ly9u
aW50ZXhpbnRlcmFjdGlv bjAxLnNoYXJlcG9pbnQu Y29tLzwvU1A+

rtFa 1h7uD64lbzIMJbaMdvkS ESxgr1Pvmip7im344/ea
Y4wD4NRaDm7vKG5o15Ea LbLSRfxo6RyL7R5Y0V//
0SJu8pMAwbGICBRmT4GJ DtWfulY3oQ/R7OtSuXHv
Z5d5K5NW+K4L7UCJOCGG ARFklIewKoGcUNNX57D1
nMbVWjO8FacVD3YQ5PQT 7nCE1E7qwN+YMRBhermV
b9QlpT7wfDk5q9yMSw1v NT7/IjO5CLaMZtr3waq4
nAWB4i9tzV5PPXhMdUDv dPK2pk952kIFC/cnrvVQ WXQaR0rI0ooYz7KbiYyO
/NivVWofEkgA8Y180g1e ju0BpBT35/0F7mcq3peb
FzC2GaKUYQdczZTYLw58 jeobnJoGGgbixwBbmeWg ZYruIAAAAA==

Send request including authentication cookies

For each request to the API, you must include the FedAuth and rtFA cookie as headers in
your request with the following format:

lCookie: FedAuth=77u...
lCookie: rtFA=1h7...

SharePoint Online will be able to accept your authorization and will process your
request.

Related Information

REST API Resources

Common headers
The Nintex Forms for Office 365 REST API uses both common request and response
headers, supported by all operations included in the REST API, and specific request and
response headers, used only in certain operations. This section describes the common
request and response headers used in the REST API. For more information about spe-
cific request and response headers used for a specific operation in the REST API, see the
documentation for that operation.

Request headers

The following request headers are supported by all operations included with the Nintex
Forms for Office 365 REST API.

Header Description
Accept Set to the following value:

application/json

-45-

Nintex Forms: API for SharePoint O365

Header Description
Authorization A cookie that contains the SharePoint site used by the REST operation

and the SharePoint authentication cookie used to authenticate the
REST operation for SharePoint.

The cookie uses the following format, replacing <site> with the
SharePoint site URL and <authcookie> with a valid SharePoint
SPOIDCRL or FedAuth authentication cookie for the specified site, as
needed, to authenticate the request with SharePoint.
cookie <site> <authcookie>

For more information, see "Authentication and authorization" on page
38.

Api-Key The API key for NintexForms for Office 365 REST API.

For more information, see "Authentication and authorization" on page
38.

Response headers

The following response headers are supported by all operations included with the Nintex
Forms for Office 365 REST API. Depending on SharePoint and ASP.NET configuration,
other headers may also be returned.

Response
Header

Description

Content-
Length

The length, in octlets, of the response body.

Content-Type The MIME type of the content in the response body. Unless specified
by the operation, set to the following value:
application/json; charset=utf-8

Correlation-
Identifier

The correlation ID of the operation.

Date The date and time at which the response was sent by the server.

Related Information

REST API Resources

Common status and error codes
All responses from operations in the Nintex Forms for Office 365 REST API include an
HTTP status code, indicating whether the operation was successful. If an error was
encountered by an operation, additional information about the error can be provided in
the response body, depending on the error.

HTTP status codes

HTTP status codes are used to indicate the status of an operation in the Nintex Forms for
Office 365 REST API. The following common HTTP status codes are supported by the
REST API. For more information about the Message and Error objects in responses,
see "Response bodies" on the next page.

Status
code

Description

200 OK

The operation was successful. The operation can return a Message object
in the response body, depending on the operation.

-46-

Nintex Forms: API for SharePoint O365

Status
code

Description

400 Bad Request

An invalid operation has occurred. The operation can return an Error object
in the response body, further describing the error, depending on the
operation.

401 Unauthorized

The operation is not authorized for the specified user. The operation returns
an Error object in the response body, further describing the error.

403 Forbidden.

The operation is forbidden. The operation returns an Error object in the
response body, further describing the error.

404 Not Found

The specified resource could not be found. The operation returns an Error
object in the response body, further describing the error, depending on the
operation.

405 Method Not Allowed

The operation is not allowed. The operation returns an Error object in the
response body, further describing the error.

500 Internal Server Error

The application has encountered an unknown error. The operation can
return an Error object in the response body, further describing the error,
depending on the operation.

Nintex Forms for Office 365 error codes

If an HTTP status code other than a success code is returned by an operation, an Error
object is returned in the response body of the operation, in which additional details of
the error are provided. The following common error codes are supported by the Nintex
Forms for Office 365 REST API.

Error code Message
NF-1001 The Nintex Forms app was not found for the specified site.
NF-1002 The user does not have permission.
NF-1003 Failed to publish Nintex Form.
NF-1004 The specified package is not valid.
NF-1005 The specified list could not be found in the site.
NF-1006 Nintex form not found for the specified list.
NF-1009 Failed to delete Nintex Form.

Related Information

REST API Resources

Response bodies
The responses provided by operations in the Nintex Forms for Office 365 REST API typ-
ically use one of two objects to represent the response body of the response. If an oper-
ation was successful, the response body contains a "Message" on the next page object
that represents the information returned by the operation. Otherwise, the response
body contains an "Error" on the next page object, which provides information about the
error response.

-47-

Nintex Forms: API for SharePoint O365

Message

The Message object represents the response body of a successful response returned by
an operation. The object can provide information about the identifier, data, and
metadata about the successful response, as well as links to other operations relevant to
the successful response.
Properties

Name Type Nullable Description
data varie

s
true If specified, the data returned by the operation.

metadat
a

varie
s

true If specified, the metadata returned by the operation.

id string true If specified, the identifier returned by the operation.
_links array true If specified, an array of Link objects, representing

relative links to other REST operations relevant to the
operation. For more information about the Link object,
see "Data types" on the next page.

Remarks

When an operation returns a successful response, the content of the response varies,
depending on the operation itself. For more information about the contents of a
response body for a successful response from an operation, see the documentation for
that operation.
Example

The following example describes the response body of a successful response received
while attempting to import a form to a SharePoint list. For more information about
importing a new form, see "Importing a form" on page 12. The id property provides the
identifier of the new form, and the _links property provides links to relevant oper-
ations, relative to the new form.
{

"id": "fd4f1cd2-7ea7-4b62-9751-0ff83ab609f7",

"_links": [

{

"rel": "self",

"href": "{?migrate}",

"isTemplated": true

},

{

"rel": "export",

"isTemplated": false

},

{

"rel": "publish",

"isTemplated": false

}

]

}

Error

The Error object represents the response body of an error response returned by an
operation. The object can provide information about the SharePoint correlation ID for
the error, internal error code, and additional information about the error response, as
well as links to other operations relevant to the error response.
Properties

-48-

Nintex Forms: API for SharePoint O365

Name Type Nullable Description
code strin

g
true If specified, the internal error code of the error. For

more information about error subcodes, see
"Common status and error codes" on page 46.

correlationI
d

strin
g

false The correlation ID of the error.

message strin
g

true If specified, the description of the error.

moreInfo strin
g

true If specified, a string that represents a URI which can
provide additional information about the error.

_links array true If specified, an array of Link objects, representing
relative links to other REST operations relevant to
the error. For more information about the Link data
type, see "Data types" below.

Remarks

When an error is encountered by an operation in the Nintex Forms for Office 365
REST API, this type can return an internal error code in code. The internal error code
represents either a common error code for the Nintex Forms for Office 365 API, or a spe-
cific error code for that operation. For more information about error codes specific to an
operation, see the documentation for that operation. For more information about error
codes common to all operations in Nintex Forms for Office 365, see "Common status
and error codes" on page 46.
Example

The following example describes the response body of a successful response received
after importing a form. For more information about importing a form, see Import Form.
The rel property contains the relative URL of the default view for the specified
SharePoint list, relative to the SharePoint site, the href property contains a relative
URL of the endpoint to publish the form., and the isTemplated property indicates if the
form is based on a template.
{

"_links": [

{

"rel": "forms.publishdefault",

"href": "/api/v1/forms/6263627c-57a6-42d0-9c87-2232e4e1899d/publish",

"isTemplated": false

}

]

}

Related Information

REST API Resources

Data types
The following section describes the data types, other than response bodies, used by the
Nintex Forms for Office 365 REST API. For more information about response bodies, see
Response bodies.

The following data types are provided by the REST API:

l "Link" on the next page

-49-

Nintex Forms: API for SharePoint O365

Link

The Link object represents a relative link to another resource, such as an operation in
the REST API.
Properties

Name Type Nullable Description
rel string false The relation, or name, of the link.
href string true The relative URL or URL template of the link. If

isTemplated is set to true, this property contains
a relative URL template; otherwise, this property
contains a relative URL. In either case, the value is
relative to the base URL of the REST API. For more
information about the base URL, see "Base URL" on
page 38.

isTemplated boolean false If set to true, the value of the href property
represents a relative URL template; otherwise, the
value represents a relative URL.

Remarks

The Link objects provided by the REST API are compatible with the Hypertext Applic-
ation Language (HAL) specification. For more information about the HAL specification,
see HAL - Hypertext Application Language, at http://stateless.co/hal_specification.html.
Example

The following example illustrates a collection of Link objects, returned in the _links col-
lection of a Message response body. All three Link objects represent relative URL tem-
plates, covering four operations included in the REST API.
{

"_links": [

{

"rel": "forms.publishdefault",

"href": "/api/v1/forms/b7fea5eb-db3c-45f5-b590-ddcd0b12bd4e/publish",

"isTemplated": false

}

]

}

Related Information

"Response bodies" on page 47

REST API Resources

-50-

Nintex Forms: API for SharePoint O365

http://stateless.co/hal_specification.html

	Nintex Forms for Office 365 REST API
	Nintex Forms O365 Quick Start
	1. Get the items you need before you work with the API
	2. Working with the REST services
	A. Get your authentication cookie from SharePoint
	With a .NET REST Client
	With Windows PowerShell

	B. Collect your header information
	C. Construct a URL to reach the target endpoint
	Next steps
	Related information

	Guide
	What is REST?
	What can I do with the REST API?
	Related information
	Exporting a form
	Considerations
	Prerequisites
	Code
	Example
	Related Information

	Importing a form
	Considerations
	Prerequisites
	Code
	Example
	Related Information

	Saving a form
	Considerations
	Prerequisites
	Code
	Example
	Related Information

	Publishing a form
	Considerations
	Prerequisites
	Code
	Example
	Related Information

	Delete a form
	Considerations
	Prerequisites
	Code
	Example
	Related Information
	Base URL
	Related Information

	Authentication and authorization
	Authenticating operations for SharePoint Online

	Visual C#
	Windows PowerShell
	Authorizing operations for the Nintex Forms for Office 365 REST API
	Related Information

	Getting Your SharePoint 0365 Credentials via REST
	Get Your Authentication Cookies

	Example:
	Related Information

	Common headers
	Request headers
	Response headers
	Related Information

	Common status and error codes
	HTTP status codes
	Nintex Forms for Office 365 error codes
	Related Information

	Response bodies
	Message
	Error
	Related Information

	Data types
	Link
	Related Information

