

• •

/**
* This is a function that "Return Cosine Value - cosine(x)
* @param {int} xValue The cosine input value.
* @return {int} cosine The cosine
*/
c$.cosine = function (xValue) {

var c = Math.cos(xValue);
return c;

};

//Converts a JSON string to XML.
public string XmlToJson(string inputXMLasString)
{

try
{

var outputJsonAsString = "";
var xmldoc = new XmlDocument();
xmldoc.LoadXml(inputXMLasString);
outputJsonAsString =

JsonConvert.SerializeXmlNode(xmldoc);

return outputJsonAsString;
}
catch (Exception ex)
{

var expectmessage = ex.ToString();
var

returnmessage = "JSON not valid. " +
expectmessage;

return returnmessage;
}

}

:
• You will need a runtime that will run your function
• You will need an interface where external

applications can pass input into your function and
get the return from your function

:
• Focuses, or simplifies, your development problem
• Is stateless
• Allows higher-level logic to be handled via Nintex

Workflow

• REST: The one interface to rule them all.
Where your place your function, it can be
reached via a RESTful interface.

• The Nintex Platform offers a variety of REST
endpoints as events and workflow actions.

• Cloud services are built to offer accessible
endpoints via REST.

• Within the context of the Nintex Platform,
you can create managed code solutions and
add your function as a dynamic link library
(DLL) to the SharePoint environment.

• External to Nintex you can host your
function as a severless function within an
API on a cloud platform such as Amazon
Web Services (AWS), Google Cloud, and
Windows Azure.

•

•
•
•
•

•

•
•
•

•

•
•
•

•

•

•

•

•

•
•
•
•
•
•
•
•

JsonConverterAction
Takes a string and checks it is JSON or
XML and then converts JSON to XML
or XML to JSON.

• Input: String (JSON/XML)
• Output: String (XML/JSON)

Portability includes several aspects.

• Event Receiver
• Package
• Configuration Page (aspx)
• NWA file
• ActionAdapater.cs
• ActionActivity.cs

Roll your function in higher-level logic:

• Add actions that provide support for:
• Context handling
• Validation
• Error handling
• Monitoring (Nintex Hawkeye, for example)

• Supports separation of concerns
• Supports encapsulation

https://run.nintex.io/x-start/weuyj1TkGD��

Your workflow can be called from any REST
client. A client can pass a parameter and
receive the return in a call back.

• In your workflow you can provide support for:
• Context handling
• Validation
• Error handling
• Monitoring (such as Nintex Hawkeye)

• Supports separation of concerns
• Supports encapsulation

Your function can be called from any REST
action in Nintex Workflow:

• Your function can extend workflows in Nintex
2013/2015, Nintex 0365, and NWC

• Update your code in one location.
• Conceal any complexity behind the REST interface.

• Note: Your function must be stateless.

POST /api/v1/workflow/published/601107ff-10eb-4340-bb44-
86a93f984993/instances?token=eyJhbGciOiJIUzI1thisisyourcall
inatokenb3JrZmxvd0lkIjoiNjAxMTA3ZmYtMTBlYi00MzQwLWJiNDQtODZ
hOTNmOTg0OTkzIiwidGVuYW50SWQiOiJlOTc5NjgzYi1hMjAwLTRjODAtOD
lmOS03NjEwOWRlNzJkYzgiLCJpYXQiOjE0ODE0MDE5OTV9.KyjfTMmYGM54
5pLG1DtePSlT-0NMjv_ZhS8L0UgXOVs
HTTP/1.1
Host: yourtenant.workflowcloud.com
Content-Type: application/json
Cache-Control: no-cache
Postman-Token: e7474ba4-5555-f963-9d65-2d2dce29fb6c

{
"startData": {

"se_word1": "rabbit"
},
"options": {

"callbackUrl": "<optionally add a callback URL
here. Must be HTTPS>"

}
}

• Register and track your inventory of functions in a
central tool

• Map functional dependencies as part of your
deployment workflow

• Instrument your functions at the workflow level for
performance and usage monitoring

• Use a tool such Swagger.IO to manage your API
endpoints.

• Review the organic growth and state of your
architecture at regular intervals

• Be mindful of your contracts: a RESTful endpoint is an
interface and a contract

